
1 // Contentful Certified Professional Exam Study Guide

Contentful Certified
Professional Exam

study guide

2 // Contentful Certified Professional Exam Study Guide

Introduction
••

WHY BECOME CERTIFIED?
Contentful is the platform of choice for the next generation of content management. As a result,
Contentful expertise is increasingly in-demand.

Whether you are in an organization that is implementing Contentful, you work for an agency
that serves Contentful clients, or you are an independent consultant, becoming a Contentful
Certified Professional can help your career by providing objective proof of your Contentful ex-
pertise.

WHO IS THE AUDIENCE?
The Contentful Certified Professional exam is intended for software developers, technical archi-
tects, technical managers, content architects, and others responsible for the technical design,
development or implementation of Contentful projects. As a result, this Study Guide is written
primarily for this audience.

HOW SHOULD YOU PREPARE FOR THE EXAM?
This Study Guide provides a high-level overview of essential Contentful topics, features and
best practices. It also contains many links to other learning resources (videos, documentation,
articles). To get the full value out of the Study Guide, make sure you use these links to dive
deeper into important topics.

While exam candidates who use the Study Guide tend to do better on the exam than those who
don’t, the study guide is neither a list of exam questions nor an answer key. There may be ques-
tions on the exam that aren’t covered here.

In addition to the Study Guide, here are three other ways to supplement your learning:
1. Take the Developer and Content Modeling courses available in the Contentful Learning

Center.
2. Explore the Contentful Developer Portal. Here you will find links to product documenta-

tion, forums, videos covering technical topics, and more.
3. Get hands-on experience with Contentful. If you don’t already have access to Contentful,

you can sign up for a free account.

https://public.learningcenter.contentful.com/
https://public.learningcenter.contentful.com/
https://www.contentful.com/developers/
https://www.contentful.com/sign-up/

3 // Contentful Certified Professional Exam Study Guide

Table of Contents
Why Contentful?
A massive market shift ...5
Stacks beat suites ...7
Build products faster ...8
Enterprises are replatforming on Contentful ...9
Contentful’s API-first approach ..10
Power content across all your digital channels ..11
Contentful runs as a SAAS ...12
Contentful use cases ..13

Content Delivery Architectures
Where and when does rendering happen? ...14
Dynamic on server ...15
Static site generator ...16
Dynamic on device ..17
Dynamic hybrid with Node.js ...18

Contentful Core APIs
Four core rest APIs ...19
Content Management API ..20
Content Delivery API ...20
Content Preview API ..21
Contentful Images API ..21
SDKs ..22
GraphQL Content API ...23

Content Modeling
Structured content ...24
From structured content to content modeling ..25
Content types and fields ...26
What should you store in Contentful? ...27
Topics vs assemblies ...28
Fixed vs flexible assemblies ..29
Inheritance ..30
Composition ..31
Localization ...32
Field-level localization ...33
Entry-level localization ..34
Asset management ..35
Media wrapper content types ..36
Using a DAM ...37
Rich text ...38

4 // Contentful Certified Professional Exam Study Guide

Content modeling process ...39

Authoring in the Contentful Web App
What’s in it for content authors? ..40
The Contenful web app ..41
The authoring experience ..41
Nested entries ..42
Previews for content authors ..43
Localization for content authors ...44

Extensibility
Why extensibility? ..45
Contentful’s extensibility journey ...45
What is an App? ...46
What is the App Framework? ..46
Apps vs UI extensions ...47
Apps use cases ...47
Apps locations ..48

Webhooks
What is a webhook? ..49
Configuring webhooks ...50

Roles and Permissions
What are roles and permissions? ...51
Configuring roles and permissions ..52
Custom roles and permissions ...53
Teams ..53

Managing Content at Scale
Why content as code? ...54
CLI tools ..55
Contentful’s domain model ..56
Space modeling patterns ...57
One space to rule them all ...58
Separate space per project ..58
Multi-tier spaces ...59
Using environments for agile development ...60
Risk-free releases and instant rollbacks ..61
Use cases for environment aliases ...62
Managing content with code ...63
Refactoring using expand/contract pattern ...64

5 // Contentful Certified Professional Exam Study Guide

Why Contentful?
••

A MASSIVE MARKET SHIFT
Contentful was designed to be the content layer of the modern enterprise software stack. As
opposed to proprietary and monolithic “suites,” Contentful is an API-first, cloud-native SaaS that
was designed for easy integration into modern, microservice-based architectures. While many
people refer to Contentful as a headless CMS (content management system), we believe “con-
tent infrastructure” is a more accurate term for what we provide.

One of the main drivers causing organizations to move to Contentful is that the nature of digital
content is changing rapidly. To keep up, organizations of all kinds find themselves in the busi-
ness of creating software. In the past, digital content mostly meant websites. But today, digital
content can be displayed on a wide variety of devices—phones, watches, conversational inter-
faces, kiosks, digital billboards and many more. Contentful makes it possible to launch new digi-
tal sites quickly, reuse content between sites, and display content on any kind of digital device
(websites, mobile apps, IoT devices, VR and AR experiences, etc).

6 // Contentful Certified Professional Exam Study Guide

CMSes slow down your team in a number of
ways:

Rigid data models
• Inflexible content models don’t work

well across experiences, leading to silos
and low reusability

• When you buy a CMS, you are buying a
website and then customizing it to the
use cases you need

• With content stuck in rigid data mod-
els and silos across multiple systems, it
can’t adapt to new channels and inter-
faces

Monolithic Suites
• All-in-one suites come tightly-coupled

and highly-opinionated, forcing you to
play by their rules

• Requires large upfront investments of

time and money; you can’t just start
building the MVP of your new digital
product

• Comes bundled with many other prod-
ucts, causing customers to over-buy and
under-use the solution

Legacy Workflows
• Not built for modern workflows and

tools
• Hard to spin off dev environments, hard

to do testing at scale, hard to merge
content model changes back into pro-
duction

• Hard to collaborate on complex digital
products across multiple team

7 // Contentful Certified Professional Exam Study Guide

STACKS BEAT SUITES
The way that companies build software has totally changed. It’s about stacks, not suites; micros-
ervices, not monoliths.

The big benefit of this modern stack is to enable digital teams to have greater agility and im-
pact by focusing on their company’s core business value and outsourcing the rest to an ecosys-
tem of purpose-built services.

For publicly-traded or late-stage venture-funded vendors, investors become more important
constituents than customers. Lately, investors have been looking for “greater share of wallet”
and vendors have been falling over themselves to show that their cross-selling strategies are
working.

There is no marketplace here because no enterprise digital leader would actually purchase
“digital experience” as a platform. DX is a strategy and approach, and no single platform or ven-
dor on this chart will get you there. We view Contentful as being the content layer in the mod-
ern enterprise digital experience stack.

8 // Contentful Certified Professional Exam Study Guide

BUILD PRODUCTS FASTER
Contentful accelerates your team in a number of ways:

Structured content
• You get a lot more flexibility by creating your content as components so it can be reused

and repurposed across products, channels, and teams
• It’s flexible enough for existing apps and future-proof for those yet to come
• It’s context-agnostic, independent from mediums, platforms, programming languages,

etc.
• It’s also not tied to opinionated data models like a traditional CMS

Decoupled architecture
• The content is decoupled from the presentation layer so your team can build unique cus-

tomer experiences
• By being born in the cloud, it was built to connect with other platforms and services
• It’s composable, allowing you to use only what you need, and adopt new features as you

grow
• It scales confidently on an enterprise-tested platform

Agile workflows
• It was born agile, purpose-built to integrate with software delivery pipelines, developer

environments, and automation
• It changes with your software and workflows
• It lets you iterate and experiment fast, inside your soft-

ware delivery pipeline

9 // Contentful Certified Professional Exam Study Guide

ENTERPRISES ARE REPLATFORMING ON CONTENTFUL
An example of Contentful in action is with Telus, a large wireless provider in Canada. With
Contentful, Telus Digital greatly sped up the time it took to bring new products to market. When
the Apple iPhone X launched, they were the only company in Canada to offer the new phone
during the first 15 minutes after its release. It all started with a single proof of concept for the
Samsung S8. In that proof of concept, their team reduced their go-to-market time frame by 14
times, from weeks to days.

By integrating Contentful with Adobe’s personalization and analytics tools, Telus has seen a 14%
increase in conversions. And with Contentful’s infrastructure and CDNs for caching API calls
they’ve seen a 30% increase in page speed.

10 // Contentful Certified Professional Exam Study Guide

CONTENTFUL’S API-FIRST APPROACH
An API-first CMS is still a CMS, but one that deviates from a classic CMS (e.g. Wordpress) by not
caring about the display of the content. Instead, an API-first CMS focuses on managing content
and doing that well. The API-first CMS works by abstracting representations of your data, defin-
ing “types” of data that can be stored and instances of data that adhere to these types.

For you to use the content managed through the API-first CMS, you will get an API, typically a
REST API that serves the managed content, including functionality to search, filter, sort and pag-
inate the returned content.

And on top of that API, you are free to use whatever framework, methodology and language
you want.

11 // Contentful Certified Professional Exam Study Guide

POWER CONTENT ACROSS ALL YOUR DIGITAL CHANNELS
On the left side of the diagram above you see how content flows into Contentful. Developers
either use the Content Management API directly, or CLI tools we provide built on top of the
Content Management API to create content models, perform automated testing, etc. Content
authors typically do all of their content creation in the extensible Contentful web app. They can
save content in draft mode, put new content through customizable moderation workflows, and
preview draft content before it is published.

After content is published it can be retrieved through the Content Delivery and Images APIs, as
well as the SDKs built on top of them.

12 // Contentful Certified Professional Exam Study Guide

CONTENTFUL RUNS AS A SAAS
Contentful runs as a SaaS on AWS. Contentful’s cloud-native architecture supports auto-scaling
so large spikes in traffic can be handled without any need for doing emergency upsizes of serv-
er hardware. To achieve high reliability, Contentful runs in three separate availability zones of an
Amazon region. Enterprise customers have the option to run in their own separate, dedicated
instance of Contentful’s infrastructure.

For companies accepting credit card payments, Contentful offer full PCI DSS compliance. The
data centers used for storing your content and allowing it to be delivered to your users are cer-
tified for compliance with the ISO 27001 standard. And of course we are GDPR-compliant.

Scale and High Availability platform types are both PCI DSS compliant. Multi-Region Delivery In-
frastructure (MRDI) is also an option for enterprise customers, where, in the highly unlikely event
of an AWS region failure, Contentful will automatically route traffic to a second AWS region.
Contentful offers up to a 99.99% SLA for customers on MRDI.

13 // Contentful Certified Professional Exam Study Guide

CONTENTFUL USE CASES

Keep in mind
While Contentful is used across a large num-
ber of vertical industries in many different
usage scenarios, there are some use cases
that are not a good fit:

• User-generated content
• Static sites that regenerate extremely

frequently
• WYSIWYG author experience
• Countries that censor content

User-generated content has the potential
to flood our CMA APIs with large bursts of
content posts and exceed the rate limits de-
signed for editorial teams, not thousands of
concurrent users. While you could consider
adding a proxy server between the posting of
user-generated content and Contentful, it is
often best to use purpose-built SaaS solution
for this.

Static site generators create fast websites and
have great SEO. However, it can often take
several minutes to generate new sites after
content changes. Sites that have large editori-
al teams with round-the-clock content chang-
es are often not a good use case for them.

Editors love WYSIWYG interfaces, but they
have two big problems:

1. They generate HTML which cannot be
easily rendered on non-browser devices

2. They generate large blobs of unstruc-
tured content that do not promote
reusability.

Finally, using Contentful in countries that im-
pose a high degree of censorship on

websites is often not a good use case for us.

Be excited
These are examples of some of the very best
use cases for Contentful:

• Enabling content operations at scale
• Building engaging, cutting edge appli-

cations
• Enabling the digital transformation

journey

There’s nothing more important than devel-
opment speed and velocity for forward-think-
ing companies today. Contentful’s API-first
model makes it easy for developers to learn
how to use the platform. They can typically be
making API calls in 30 minutes.

Contentful’s multiple environments, web-
hooks and content migration API let develop-
ers treat content as code and enable content
operations at scale.

The web is no longer just HTML pages in web
browsers. Contentful lets developers render
content on any type of digital device, and,
with its easy-to-build UI extensions, integrate
with modern personalization engines, DAMs,
AI tools, etc.

14 // Contentful Certified Professional Exam Study Guide

Content Delivery Architectures
••

WHERE AND WHEN DOES RENDERING HAPPEN?
Legacy CMSes typically only support a single delivery architecture: dynamic on server. This
architecture makes database calls to retrieve content. A templating language is then used to
render an HTML page, and send the page back to the requesting browser.

In contrast, Contentful supports a variety of delivery architectures:
1. Dynamic on server: A server-side app receives a request from an end user, retrieves con-

tent from Contentful (and possibly other data sources), renders the content, and sends it
back in response.

2. Static site generator: A static site generator fetches content from Contentful at timed in-
tervals and then builds the rendered HTML pages and stores them on a static web host.

3. Dynamic on device: A client-side app using the Contentful SDKs requests content from
the Contentful APIs and renders the content on the device.

15 // Contentful Certified Professional Exam Study Guide

DYNAMIC ON SERVER
Dynamic on server architecture (such as backend for frontend or server-side rendering) is based
upon some kind of server (typically based on Java or Node.js), which makes API calls to Con-
tentful and often to other web-based services. Content from the various API calls are combined
and then rendered for the requesting device, such as generating an HTML page for a web
browser.

PROS CONS

• Lots of languages and framework
options

• Reactive – no stale data
• Easier SEO
• Secure secrets (API tokens not

exposed to end users)

• Server-related scalability ($$$)
• Higher page latency
• Requires external caching or CDN
• Potential single point of failure

16 // Contentful Certified Professional Exam Study Guide

STATIC SITE GENERATOR
Static site generators (SSG) are a type of delivery architecture that is well-suited to Content-
ful’s API-first architecture. An SSG such as Gatsby retrieves content from Contentful, renders an
HTML page server-side, and then ships the fully rendered pages to a CDN. Since users are ac-
cessing web pages from the worldwide caches of CDNs, site response is blazingly fast, resulting
in benefits such as higher conversion for e-commerce sites and higher SEO scores. This video
shows how Contentful, Gatsby, and Netlify work together, via webhooks, to rebuild websites
after a content author edits a piece of content in Contentful.

PROS CONS

• Easier SEO
• Offline capability
• Static HTML is fast and simple to serve
• Secure secrets (API tokens not

exposed to end-users)

• No immediate preview/potential for
stale data

• Web page-centric
• Generation time can be problematic

for frequent content changes
• Requires external hosting, caching,

and CDN

https://www.gatsbyjs.org/
https://contentful.wistia.com/medias/4pvq8cke43

17 // Contentful Certified Professional Exam Study Guide

DYNAMIC ON DEVICE
Contentful also supports the Dynamic on Device architectures, where the device (e.g. native
mobile app) will directly make Contentful API calls and combine the result with API calls to other
services. Single Page Applications (SPA) are the best known example of this type of delivery
architecture.

PROS CONS

• Simple
• Reactive – no stale data
• Fully leverages the Contentful CDN

• SEO support requires more effort
• Possible browser compatibility issues

18 // Contentful Certified Professional Exam Study Guide

DYNAMIC HYBRID WITH NODE.JS
A hybrid approach of using a JavaScript framework such as React, which supports isomorphic
execution on both the server and front-end device, combines the benefits of both the Dynamic
on Server and Dynamic on Device approaches. Initial page rendering can be executed on the
Node.js server and sent to the device, with the JavaScript framework taking over rendering
from that point on.

PROS CONS

• Lots of languages & framework op-
tions

• Reactive – no stale data
• Easier SEO
• Fully leverages the Contentful CDN

• Complexity of architecture
• Potential single point of failure

19 // Contentful Certified Professional Exam Study Guide

Contentful Core APIs
••

FOUR CORE REST APIS
Contentful has four core REST APIs: Content Management API, Content Delivery API, Content
Preview API, and Images API. While this sounds like a lot, in reality the Content Preview and
Content Delivery APIs are exactly the same - they just have different end points and different
behavior. And the Images API is essentially a single HTTP request with different query parame-
ter options.

There are many benefits to splitting up the APIs into these four segments. The CMA is the only
one that has write-access to Contentful’s infrastructure, and we protect your content by putting
a web application firewall in front of it. There’s no need to do that with the read-only APIs.

Content authors and developers always want the latest content. They don’t want to deal with
stale, cached content. At the same time, content authors and developers need to provide users
with the fastest performance possible. That’s why we’ve put CDNs in front of the Content De-
livery API and Images APIs, while there is no CDN in front of the Content Management API and
Content Preview API. This video provides an overview of all four APIs.

https://contentful.wistia.com/medias/lvmofw41fi

20 // Contentful Certified Professional Exam Study Guide

CONTENT MANAGEMENT API
The Contentful web application is built on top
of the Content Management API. Developers
can access the CMA securely via HTTPS, and it
will be available to clients authenticating with
an access token.

To access the Content Management API and
store content created in your apps, you need
a content management token that represents
the desired account of your user. This token
will have the same rights as the owner of the
account.

There are two types of content management
tokens :

• Personal access tokens - use if you’re
using the Content Management API to
access data from your own Contentful
user account

• OAuth tokens - Use if you’re building a
public integration that requests access
to other Contentful user’s data

You can create personal access tokens using
the Contentful web app. Open the space that
you want to access (the top left corner lists all
spaces), and navigate to the APIs area. Open
the content management tokens section and
create a token.

If you are creating apps for changing con-
tent stored in Contentful, you will need to
create a custom OAuth application.

An OAuth 2.0 application has a number
of benefits:

• OAuth 2.0 access tokens are linked
to your app

• You can request the correct OAuth
2.0 scopes for your application
(content_management_read or

content_management_manage)
• You can specify a custom redirect URL

that will receive the access token as part
of the URI’s hash fragment

• You can specify a custom name and
description

• You can specify whether your applica-
tion is confidential or public

CONTENT DELIVERY API
The Content Delivery API, available at cdn.
contentful.com, is a highly available, highly
scalable, read-only API for delivering content
to apps, websites, and other channels. Con-
tent is delivered as JSON data, and images,
videos and other media as files.

The Content Delivery API is available via a
globally distributed CDN. The server closest
to the user serves all content, which minimizes
latency and especially benefits mobile apps.
Hosting content in multiple global data cen-
ters also improves the availability of content.

https://www.contentful.com/developers/docs/references/content-management-api/
https://www.contentful.com/developers/docs/references/content-delivery-api/

21 // Contentful Certified Professional Exam Study Guide

CONTENT PREVIEW API
In addition to the Content Delivery API for published content, the Content Preview API is for
previewing unpublished content as though it were published. It maintains the same endpoints
and parameters as the Content Delivery API, but delivers the latest draft, updated, and pub-
lished entries and assets.

This is a read-only API. Calls to this API are not cached so preview will always have the most up-
to-date content.

CONTENTFUL IMAGES API
Most legacy CMSes require you to upload multiple renditions of an image at different reso-
lution and quality settings. With Contentful’s read-only Images API you can upload a single,
high-resolution image and then use the Images API to request different versions with scaling,
cropping, quality level and file format changes. The derived images are created in real-time and
then cached in a CDN for future requests.

Contentful allows you to request an image in a different file format from what you uploaded.
You can convert between the following raster image formats: JPEG (including progressive
JPEG), GIF, PNG, and WebP. WebP images are often 45% smaller in size than the equivalent
PNG version.

Note that all of the above file formats are raster image types. You can upload images in vector
file formats such as SVG, but they will be treated as binary assets and cannot be used with the
Images API.

In addition to scaling and cropping images, the Images API allows you to choose the focus area
for cropping (e.g. top left of the image). You can also instruct the API to do facial detection for
the cropped focus area. The default is the center of the image.

The Images API supports returning an image with a varying level of quality with the “q” param-
eter. Values can be from 1 to 100, with 100 being highest. Smaller quality values will result in
small file sizes. The quality parameter is ignored for 8-bit PNGs.

https://www.contentful.com/developers/docs/references/content-preview-api/
https://www.contentful.com/developers/docs/references/images-api/

22 // Contentful Certified Professional Exam Study Guide

SDKS
While you can directly call Contentful’s REST APIs using any programming language, you will
generally want to use one of our eight SDKs built on top of our REST APIs.

Using a language-specific SDK has a number of benefits over directly calling the REST APIs.
There is typically a lot of boilerplate code required to set up and make the API call, check the
HTTP response of the result of the call, handle errors consistently, and so on. That’s why the use
of an SDK will significantly speed up your development, while also helping ensure good coding
practices.

We have SDKs for JavaScript (Node.js), PHP, Android (Java), iOS (Swift), Java, Python, Ruby and
.NET.

23 // Contentful Certified Professional Exam Study Guide

GRAPHQL CONTENT API
GraphQL is a query language for APIs, and a server-side runtime for executing queries by us-
ing a type system you define for your data. With GraphQL you can state precisely what data
you want returned in a query, preventing excessively large amounts of data being returned.
GraphQL schemas are strongly typed, so you can reliably know what type of data is returned.
GraphQL also supports schema stitching, allowing a single GraphQL call to multiple underlying
GraphQL APIs.

Contentful’s implementation of GraphQL is built on top of our core REST APIs. There’s no need
for you to create a GraphQL schema — we generate it for you based upon your content model.
Since our GraphQL implementation is built on top of our Delivery APIs, you get the benefit of
high performance due to the caching of delivery API requests using multiple CDNs. While you
can access draft content through our GraphQL implementation, we don’t support underlying
Content Management API calls that would allow for creating or updating content.

24 // Contentful Certified Professional Exam Study Guide

Content Modeling
••

STRUCTURED CONTENT
To understand content modeling, you have to understand structured content.

As developers and content modelers, we want to make sure we are getting the right content to
the right audience. But, often, when we think about our content, we focus too much on where
the content will live. We fixate on the interface: a website, a mobile device, a digital screen. But
this interface-centric thinking is what often leads us to trouble — endless redesigns, siloed con-
tent, and wasted time and money.

At its simplest, structured content is about separating the “content” from its “context.” To sep-
arate content from context, think of your content as pieces or chunks of data and think of your
context as the interface.

Imagine an article. The “content” is the pieces of data, such as the title, the subtitle, the image,
etc. The “context” is the mobile device, a computer, a newspaper, or any other interface.

25 // Contentful Certified Professional Exam Study Guide

FROM STRUCTURED CONTENT TO CONTENT MODELING
So how do we create structured content at Contentful? We create content models.

Before we go any further, here’s some basic vocabulary you should master:
• Content Model is the overall architecture of your content. It divides up your project’s con-

tent into chunks we call content types. In other words, a content model is a collection of
content types.

• A Content Type is the structure or container for a piece of content. A content type is
made up of fields. Content types are always made from scratch by your development
team. There are no out-of-the-box content types.

• Fields (aka attributes) are different properties or characteristics for a piece of content.
Each field will be assigned a data type such as text, rich text, number, date, location, me-
dia, boolean, JSON object, or reference.

• An Entry is a piece of content based on a content type. You might think of an entry as an
“instance” of that content type. You might have hundreds or thousands of entries based
on a single content type. Entries will be created by content authors.

• A Reference is a link between two content types via a field (specifically a “reference field”).
References create relationships between content types.

• An Asset is any media file that has been uploaded to Contentful, such as images, video,
audio files, .pdfs, and more. Content types can include fields for “media,” which allow con-
tent authors to then link to uploaded assets.

26 // Contentful Certified Professional Exam Study Guide

CONTENT TYPES AND FIELDS
The building blocks of our content models are content types. Content types are what help us
break up our “blobs” of content into reusable components.

For example, the image below is from the Contentful web app. It is a content type called “Hotel
Landing Page” that belongs to the content model we showed on the previous page. This con-
tent type has four fields. “Title” and “Slug” are text fields while “SEO Metadata” is a one-to-one
reference field and “Sections” is a one-to-many reference field.

The one-to-one reference field only allows content authors to link to a single entry for the con-
tent type “SEO Metadata” while the one-to-many reference field allows content authors to link
to multiple entries for a number of different content types. To create these parameters in the
Contentful web app, navigate to the specific field you want to modify and go to Settings > Vali-
dations. The images below show the validations for these two reference fields.

27 // Contentful Certified Professional Exam Study Guide

WHAT SHOULD YOU STORE IN CONTENTFUL?
The image above shows the different categories of “stuff” you can store in Contentful.

You can manage a variety of content in Contentful. Contentful offers many different types of
fields with different functionality and options. For example, text fields can be short or long, full-
text searchable or not.

It’s important to note that content can be more than just traditional editorial content. It can be
process metadata, such as content moderation workflow data that would otherwise have to go
into code.

Microcopy is buttons, fields, navigation. These are little bits of copy scattered across websites or
applications that need to be maintained or even localized. You can do microcopy from Content-
ful instead of baking it into code so it can be freed from the development cycle.

You can include fields that store SEO and social media data such as the title and meta descrip-
tion for a page, Open Graph meta tags to ensure the correct thumbnail image is used for shar-
ing content on social media channels, as well as additional metadata for images to help opti-
mize SEO.

28 // Contentful Certified Professional Exam Study Guide

TOPICS VS ASSEMBLIES
To create a well-structured content model we want to break up our content into well-defined
fields and distinct content types that reference one another. At Contentful, we categorize con-
tent types as either "topics" or "assemblies." The chart below summarizes the key differences
between the two:

TOPICS ASSEMBLIES

• Individually authorable
• Pure content
• No presentation options
• Building blocks for assemblies

• Not individually authorable
• Contains topics or other assemblies
• Can include presentation options

As shown in the image below, one common example of an assembly is an image carousel. On
the left we have an entry for an assembly "Image Carousel" and on the right we have three en-
tries for the topic content type "Image with Caption." The entry for this "Image Carousel" assem-
bly contains references to entries for the topic content type "Image with Caption." This allows
content authors to create multiple instances of it using different photos for each instance while
the front-end code renders the carousel appropriately for each device or context.

29 // Contentful Certified Professional Exam Study Guide

Typically, one of the first steps in content modeling is identifying reusable content and assem-
blies.

There are two strategies for this:
1. Modeling content by focusing on the relationships inherent in the content itself
2. Starting with a display mockup and identifying the content model required to build that

display (while also thinking ahead to future needs)

Either of these approaches can lead to a good content model, depending on the skills and
preferences of those involved. In practice, content modeling often involves bouncing back and
forth between these two perspectives.

FIXED VS FLEXIBLE ASSEMBLIES
Depending on how you create your content model, you can give content authors leeway to cre-
ate a variety of layouts with your components (often referred to as a “design system”) or you can
lock down a layout into a template where the components always appear the same way.

One way to give content authors more control over the layout of components is to use a “flexi-
ble” assembly with a one-to-many reference field. This allows content authors to reorder entries
by simply dragging and dropping.

If you want to lock down a layout into a specific template, you can create a fixed assembly with
a one-to-one reference field. In this scenario, the content author can only link to a single entry
and as a result cannot reorder content by dragging and dropping. This video shows the differ-
ences between fixed versus flexible assemblies.

In practice, many assemblies are a hybrid of both “fixed” and “flexible” with both one-to-one
and one-to-many reference fields. The content type we looked at before, “Hotel Landing Page,”
is a good example of a hybrid assembly.

https://contentful.wistia.com/medias/breql5ntkn

30 // Contentful Certified Professional Exam Study Guide

INHERITANCE
In some instances, it’s useful to have some content that is shared across multiple content types
(for consistency) while other content is specific to a single content type.

Similar to the concept of inheritance in software programming, at each lower level, you only
need to specify things that are different from the levels above. In Contentful, you can achieve
this by linking content types using reference fields. With inheritance you can dramatically re-
duce the number of fields you need on each type. Common attributes get moved up to parent
types which are inherited, and maintain these common fields from the top down. Contentful
only supports single inheritance.

Imagine that you are starting an ecommerce site to sell shoes. Your first content model might
have a single “Product” content type with fields for "Name," "Manufacturer, "Color," "Shoe Size,"
"Sole Type," and "Heel Type." At this point it wouldn’t make sense to add the additional fields
needed by pants and shirts to the “Product” content type.

Instead, as shown in the image above, you can put fields that are common to all products in the
“Product” content type, and create additional content types for specific kinds of products with
fields that are specific to that content type.

31 // Contentful Certified Professional Exam Study Guide

COMPOSITION
Unlike inheritance, composition does not have content types that inherit attributes from a sin-
gle path back up the tree. With composition, your content types are “free floating” and can be
inserted into any content type.

While inheritance is a very powerful technique to use when designing a content model, most
models will primarily be based around the composition of content types. In the image above,
the “Press Release” content type is an assembly, while “SEO Content”, “Contact Info” and “Loca-
tion Info” are all topics.

32 // Contentful Certified Professional Exam Study Guide

LOCALIZATION
It’s critical to be able to create and share content with a global audience.

In Contentful we use the term locale to describe the different versions of content for different
locations or, more simply, a language-region pair. Contentful enables publishing content in mul-
tiple locales with localization.

Every Space in Contentful has its own set of locales, and each locale is uniquely identified by
its ISO code (e.g. en-US). It’s important to note that locale does not just mean language. While
German is a single language, there are many different German locales. For example, there’s de-
DE for German in Germany, de-AT for German in Austria, de-CH for German in Switzerland, and
so on.

There’s always one default locale defined when you create a space, shown by default in the
Contentful web app and used for Content Delivery API queries that do not request a specific
locale.

You can add a new locale to a space in the Contentful web app or by using the Content Man-
agement API. Contentful also supports custom locales, which some Contentful users employ to
target audiences at the state/province level. This video shows how to add and set up locales.

https://contentful.wistia.com/medias/4ai0e0fa8x

33 // Contentful Certified Professional Exam Study Guide

FIELD-LEVEL LOCALIZATION
Field-level localization is built into Contentful. Using this design pattern, the fields which have
localization enabled will be duplicated for each locale that is selected by the content author. For
example, if you have two fields, one for title and another for body, there will be a duplicate of
each field for every selected locale. The image below shows an entry for a content type where
field-level localization has been enabled for the fields “Title” and “Body.”

To set this up in the Contentful web app, navigate to the field you want to have content authors
be able to localize and go to Settings. Here you will want to check the box that says Enable Lo-
calization of this Field.

This design pattern is best for cases where you want publishing of locales to be done synchro-
nously and you have smaller content types with fewer fields. Larger content types with many
duplicated localized fields might start to become too cluttered for content authors.

This video shows how to create a content model with field-level localization.

https://contentful.wistia.com/medias/3e4f50kclp

34 // Contentful Certified Professional Exam Study Guide

ENTRY-LEVEL LOCALIZATION
Entry-level localization is not built into Contentful. With entry-level localization, you will need to
set up global-level content types that contain fields for common elements and local-level con-
tent types that contain fields for localized content.

As shown in the image below, the global-level content type should be linked to the local-level
content type via a one-to-many reference field. The reference field in the global-level content
type should be localized via the field’s validation settings. This means the individual entries
don’t need to have their fields localized. The front end will query the global-level content type
to find the appropriate localized entry.

Entry-level localization is best used for cases where you want your authors to be able to publish
content asynchronously. For example, maybe you have a marketing campaign you want to roll
out in different locales staggered over several weeks. With entry-level localization, you can have
one content author publish content in US-English today and then another author publish con-
tent in DE-German next week.

This video shows how to create a content model with entry-level localization.

https://contentful.wistia.com/medias/3k11pv49zr

35 // Contentful Certified Professional Exam Study Guide

ASSETS
In Contentful we call any type of media file an asset. Assets include images, videos, audio files,
slide decks, .pdfs, and more. There are two ways you can upload and create new assets: from
inside the Contentful web app or via our Content Management API. While any digital file can
be uploaded to Contentful as an asset, only JPEG, GIF, PNG and WebP can be accessed with
Contentful’s Images API.

DEFAULT MEDIA HANDLING
One way of handling media is to use Contentful’s default media tab in the web app. When con-
tent authors upload media this way, it will be turned into an asset and they will have three basic
fields to complete: title, description, and file. These fields cannot be changed.

This video shows how media is uploaded and turned into assets via the media tab in the Con-
tentful web app.

https://contentful.wistia.com/medias/phbzkv28pe

36 // Contentful Certified Professional Exam Study Guide

MEDIA WRAPPER CONTENT TYPES
In many cases your content authors will need more fields for their media files than what is pro-
vided for an asset. For example, they might need fields for custom metadata such as alt-text or
copyright. They might also want additional functionality for editing their media files.

When this is the case, we recommend creating a content type for your media that includes
those additional fields and links to an asset. Think of this as a media wrapper that holds the
asset but also holds additional information. If using this approach, you might want to check out
the Image Uploader UI Extension for flattening and simplifying the editor experience.

This video shows how to create media wrappers in the Contentful web app.

https://www.contentful.com/developers/marketplace/image-uploader/
https://contentful.wistia.com/medias/ivjzwvzy2g

37 // Contentful Certified Professional Exam Study Guide

USING A DAM
If you are content modeling for an enterprise, you might want to seriously consider using a digi-
tal asset management (DAM) software to help you manage and deliver your digital assets.

DAMs not only provide a single, searchable source of truth for an organization’s digital assets
but also provide a high degree of governance, have specialized support for asset approval
workflows as well as extensive metadata capabilities. Some DAMs, such as Cloudinary (featured
in the image above), also support adaptive bit-rate video streaming on top of high performance
image serving.

If your content authors are already storing and organizing their media in a centralized DAM,
there is no need to abandon that system. Any third party media service can be used with Con-
tentful as long as they offer an API you can query from a custom app. Create a custom app and
pull in media from virtually anywhere.

If you are using Cloudinary or Bynder as your DAM, you are in luck! We have pre-built apps for
Cloudinary and Bynder integration via in the Contentful marketplace. This video shows how you
can integrate Cloudinary with Contentful.

https://contentful.wistia.com/medias/9onhkj35vi

38 // Contentful Certified Professional Exam Study Guide

RICH TEXT
Rich Text is a field type that enables content authors to create rich text content, on par with tra-
ditional editors. Additionally, it allows entries and assets to be linked dynamically and embed-
ded within the flow of the text.

Rich Text provides these capabilities while maintaining a rich format on the API response. The
API response is in JSON format thereby eliminating the empty <p></p> tags (associated with
an HTML response) or shortcodes.

The rich text field gives content authors more of a WYSIWIG or classic rich text editing experi-
ence. What makes it different from Contentful’s plain text field is that you can embed pieces of
content (entries) within a body of text. The image above shows what it looks like for a content
author to edit an embedded entry in the rich text editor.

This video provides a detailed overview of everything you can do with the Rich Text field.

https://contentful.wistia.com/medias/cbquyhl704

39 // Contentful Certified Professional Exam Study Guide

CONTENT MODELING PROCESS
This is the general methodology that we find customers follow to build their content models.
Obviously for smaller teams, you can have shortened versions of this methodology or for big-
ger teams you can have more steps. Some customers leave their content models up to their
developers, which is fine. However, the most successful customers understand that content
modeling is an exercise in domain mapping. It is beneficial to have a number of stakeholders
involved in the process, not just developers. Authors and designers can contribute important
perspectives and help to understand how the content is going to be consumed and viewed.

It is hard to develop a content model in a single pass. Take an iterative approach. Create a
content model for your content authors to test and make improvements based on what you
learned.

40 // Contentful Certified Professional Exam Study Guide

Authoring in the Contentful Web App
••

WHAT’S IN IT FOR CONTENT AUTHORS?
Contentful is not just for developers. It’s great for content authors as well. Contentful empowers
content authors to publish copy wherever and whenever needed and to update content quick-
ly and independently. There’s no need for content authors to bug developers every time they
need to update content or make a change.

Note that Contentful is not a “one-size-fits-all” platform. It’s built to be extraordinarily custom-
izable to each organization and even different use cases in the same organization. That means
that content authors will need to work with you to define workflows, enable content previews,
and take advantage of other features to optimize their content authoring experience.

Here are some reasons Contentful is great for content authors:
• Reusable content - change content in one place and it changes everywhere
• Customizable workflow - easily streamline processes and organize roles and permissions
• Independence - add or change content instantly without the assistance of technical teams
• Version control - see earlier versions of content and roll back instantly

41 // Contentful Certified Professional Exam Study Guide

• Flexible localization - easily manage country-specific or audience-specific text and images

THE CONTENFUL WEB APP
The Contentful web app is the main workspace for content authors. Content authors can log in
to the web app via email address and password, third-party login providers, or your company’s
single sign-on (SSO). This video provides a tour of the Contentful web app.

The Contentful web app is organized into the following tabs:
• Organization - This shows users the organizations they belong to. Typically users will only

belong to one organization, but they might belong to multiple spaces
• Space Home - This is a launching tab that has some exercises, documentation, etc.
• Content - This is where content authors will create, edit, and update entries
• Media - This is where content authors will upload media files
• User - This is where users can update their profile information or contact Contentful for

support

THE AUTHORING EXPERIENCE
When content authors log into the web app, they will mainly be working under the “Content”
tab, where they will be creating entries based on the various content types that were modeled
by their development team. This video shows how authors create and publish a basic entry.

In addition to creating entries, content authors will also be uploading media files (images, vid-
eos, .pdfs, etc.) to create assets. We have built-in tools that allow for basic image editing, such
as scaling and cropping. This video shows how content authors create and publish assets.

Finally, we know that content authors are not just creating content. On small teams, content au-
thors are often also responsible for content operations, which are the processes, workflows, and
technologies that are required to deliver content.

Contentful offers content authors several features to streamline content operations:
• Scheduled publishing - allows content authors to schedule entries to be published or un-

published sometime in the future. This video goes over scheduled publishing in detail.
• Tasks - allows content authors to add, assign and edit tasks in the web app sidebar. This is

an enterprise-only feature at the moment.
• Comments - allows content authors to communicate directly in the web app about the

status of a project, like requesting a proofread or asking about image selections.

http://be.contentful.com
https://contentful.wistia.com/medias/00tkoq026j
https://contentful.wistia.com/medias/7t7j1guzm2
https://contentful.wistia.com/medias/rqu1m8k1de
https://contentful.wistia.com/medias/3h19ot4211

42 // Contentful Certified Professional Exam Study Guide

NESTED ENTRIES
As we’ve discussed before, structured content depends on creating relationships between dif-
ferent content types. This is achieved via references (links) between content types.

As a result of these references in your content model, your content authors will be spending a
lot of time creating nested entries. The image above is an example of what this might look like
from the point of view of a content author editing entries in the Contentful web app. The entry
for content type “Image with Caption” is nested within an entry for content type “Set of Three,”
which is nested within an entry for content type “Hotel Landing Page.”

As you can imagine, too many nested entries can become burdensome for your content au-
thors to navigate. As a result, we don’t recommend setting references in your content model
more than five levels deep.

To help content authors navigate these nested entries, Contentful offers a handy feature called
the slide-in editor. The slide-in editor stacks entries on top of one another so content authors
can keep track of where they are. This video shows the slide-in-editor in action.

https://contentful.wistia.com/medias/5avs8xaidc

43 // Contentful Certified Professional Exam Study Guide

PREVIEWS FOR CONTENT AUTHORS
As developers, you can set up one or more content preview links in a space. This generates
links in the web app’s entry editor, allowing draft and changed content to be previewed in a live
environment before it is published and made public.

This is made possible by Contentful’s Preview API, which maintains the same behavior and
parameters as the Content Delivery API, but for the latest drafts of entries and assets instead of
published content. You can set up content preview links by following this guide.

This functionality isn’t exclusive to previewing content in a web browser — it also allows you to
preview your content across mobile apps, large monitors, digital kiosks, etc.

Because the Content Preview API uses an endpoint and authorization token distinct from the
Content Delivery API, there is a low risk of accidentally exposing draft content to the public.

https://www.contentful.com/r/knowledgebase/setup-content-preview/

44 // Contentful Certified Professional Exam Study Guide

LOCALIZATION FOR CONTENT AUTHORS
The way your content authors localize content will depend on the way you’ve set up localization
for your content model.

The most straightforward way to allow content authors to localize content is through field-level
localization, which we covered on page 35.

These two videos demonstrate how content authors can localize entries and assets using field
localization.

https://contentful.wistia.com/medias/nwujft1yk8
https://contentful.wistia.com/medias/fmqc66d68s

45 // Contentful Certified Professional Exam Study Guide

Extensibility
••

WHY EXTENSIBILITY?
A key requirement for any modern content management platform is it has to be easy to extend.
You’re going to want to do integrations with other API-based web services. It should be really
easy to hook many web-based services with webhook through simple configuration, without
the need for writing custom code. You are also going to want to customize the authoring expe-
rience for your content authors.

CONTENTFUL’S EXTENSIBILITY JOURNEY
We started out by creating an SDK for UI extensions and a mechanism to create webhooks. With
UI extensions you could customize the Contentful web app with a small amount of JavaScript,
HTML and CSS. We then added a design system so these UI extensions would have the same
look and feel as the web app. We discovered that we needed to add additional capabilities
such as governance to allow org and space admins manage these UI extensions. From all of
that we evolved our UI extensions into what we call the App Framework. Webhooks remain a
stand-alone extensibility component, but we will be merging them into a future version of the
App Framework.

46 // Contentful Certified Professional Exam Study Guide

WHAT IS AN APP?
Apps allow developers to extend the basic functionality of the Contentful web app. They can
be used to update an existing field, like creating a different interface for editing JSON fields, or
building something completely new, like integrating third-party data in Contentful. For example,
adding a custom field to Contentful that allows users to search and select Shopify products.

Apps are (essentially) a small HTML5 (including CSS and JavaScript) application that exists in a
sandboxed iFrame and interacts with the Contentful web app through the Apps SDK. This SDK
is a proxy to the Content Management API and acts on behalf of the logged-on user. The Apps
code is completely customizable.

Apps can start out with something as simple as customizing the appearance of a JSON field in a
content type, and grow to provide a completely custom editorial interface for content authors.

We have built governance into the app model such that you can manage the apps you use,
public or private, at the organization and space level.

WHAT IS THE APP FRAMEWORK?
There are three key components to Contentful’s App Framework:

1. Public apps that are available in our marketplace, all open-sourced with code available on
Github.

2. Private apps that you can build in-house. Many of our enterprise customers develop pri-
vate apps. Some apps are not more than 100 lines of JavaScript and can be built in a few
hours, but generate a large UI by improving the user experience for their editorial team.
Digital agencies can also build private apps and deploy them to their customers. So when
looking at digital agencies you want to work with you should ask them what they’ve built
to date.

3. A framework with an SDK and design system to make apps really easy to build and main-
tain the same UI as the core Contentful
web app.

If you have the need for an app that doesn’t
exist yet - let’s say you want to integrate with a
DAM other than Cloudinary or Bynder for ex-
ample, you can use many of the existing public
apps as blueprints to build your own app.

https://www.contentful.com/marketplace/
https://www.contentful.com/developers/docs/extensibility/app-framework/tutorial/

47 // Contentful Certified Professional Exam Study Guide

APPS VS UI EXTENSIONS
Apps come with capabilities such as an installation screen, configuration and state manage-
ment. They can be shared across your whole Contentful organization and across spaces, which
simplifies maintenance and upgrades.

While UI extensions are building blocks for customizing a single part of the Contentful web app,
their application and ability to replicate integration across multiple spaces is limited. Taking this
into consideration, we highly recommend customers build and use apps going forward, as they
will scale even as you integrate more services with Contentful. In addition, we will continue to
release new features to apps.

APPS USE CASES
Here are three common use cases for apps:

1. Experimentation: Apps that allow marketers to run A/B experiments and obtain better
insights (e.g. Optimizely as seen in the image above)

2. Digital Asset Management: Apps that allow editors to access, select or edit media (e.g.
Cloudinary)

3. Translation: Apps that enable you to automate, manage, and professionally translate con-
tent (e.g. Smartling)

https://www.contentful.com/developers/docs/extensibility/apps/optimizely/
https://www.contentful.com/developers/docs/extensibility/apps/cloudinary/
https://www.contentful.com/partners/technology/smartling/

48 // Contentful Certified Professional Exam Study Guide

APPS LOCATIONS
As a developer, we want you to easily be able to provide rich experiences for your users. Apps
Locations enhance the user experience by adding functionality to critical touch-points of the
Contentful web wpp.

Apps currently support six locations:
1. App Configuration
2. Page
3. Dialog
4. Entry Editor
5. Entry Field
6. Entry Sidebar

The image above is an example of how you can use Apps to add extra functionality to entry
fields. The screenshot on the left shows a custom UI field that allows users to search and select
Shopify products. The screenshot on the right shows an app customization that allows users to
tag structured content in Contentful with audience IDs loaded from a project in Optimizely.

49 // Contentful Certified Professional Exam Study Guide

Webhooks
••

WHAT IS A WEBHOOK?
Webhooks are HTTP callbacks which can be used to send notifications when data in Contentful
is changed. Contentful has 16 pre-built webhooks.

Common examples of integrations of Contentful with third party systems are:
• Running a test suite on a CI service when the content model of a development environ-

ment was changed
• Deploying a production build when content was published or unpublished
• Deploying a preview build when the draft state of content has changed
• Re-building a search index when content was updated
• Feeding assets into an image detection service when they are uploaded
• Triggering email or chat notifications due to editing activity

https://www.contentful.com/marketplace/type/webhook/

50 // Contentful Certified Professional Exam Study Guide

CONFIGURING WEBHOOKS
Webhooks are called as the result of an action against assets, entries or content types. When-
ever a matching event occurs, Contentful sends a request to the URL defined in the webhook
definition.

It’s easy to configure the triggers of webhooks inside of the Contentful web app. In the top
navigation bar, open Settings > Webhooks. Click Add Webhook, configure the remote host, and
click Save.

Although Contentful’s pre-built webhooks create default JSON payloads, you can easily modify
the payload. In the image above we are changing the default payload of the Slack webhook to
generate a message that shows the editorial status of a piece of content that has been modi-
fied.

This video illustrates a custom content moderation workflow using content types, custom roles
and permissions, and webhooks. This followup video shows how the previous content modera-
tion workflow was created in Contentful.

https://contentful.wistia.com/medias/bvr2z663a0
https://contentful.wistia.com/medias/txwz1v5myc

51 // Contentful Certified Professional Exam Study Guide

Roles and Permissions
••

WHAT ARE ROLES AND PERMISSIONS?
Roles and permissions is an important feature that allows you to customize access to content for
different groups of users. The ability to assign different roles to users in various spaces provides
a great deal of flexibility in how companies can enforce governance of their content creation
process.

Let’s say that a large, multi-national company has one space for global content and multiple
spaces for regional content. With Contentful you could assign editors in the global content cre-
ation team the ability to both create and publish content in the global space, but then limit their
ability to only draft content in the regional spaces.

52 // Contentful Certified Professional Exam Study Guide

CONFIGURING ROLES AND PERMISSIONS

Contentful comes with four out-of-the-box roles:
1. Admin - Can do everything, including work with entries, create and update content types,

configure space settings and work with API keys.
2. Editor - Can work with entries, has read-only permission to content types and space set-

tings, does not have access to API keys.
3. Author - Can do everything an editor can do except for deleting, (un)publishing, (un)

archiving entries.
4. Translator - Can only work in the assigned language, can’t create, delete, (un)publish, (un)

archive any entries.

Developer and Freelance roles have been deprecated in the current product version and are
only available on select legacy plans.

Admins assign roles and permissions to users at the space level and users can have different
roles in different spaces. To configure roles and permissions in the Contentful web app, go to
the master environment for your space and from the menu bar choose Settings > Roles and
Permissions.

53 // Contentful Certified Professional Exam Study Guide

CUSTOM ROLES AND PERMISSIONS
Depending on your subscription level for Contentful, you might be creating custom roles and
permissions. In this case, it’s important to remember the following high-level principle: anything
that is not explicitly allowed is denied. For example, let’s say a role can edit entries but not read
them. This will result in a user who won’t be able to open any entries at all.

You can give a role a permission but then add specific exceptions. The image above shows how
the editor role can perform any kind of operation on an entry except for editing any entries be-
longing to the content type "Navigation Menu."

TEAMS
Contentful also offers some enterprise-level customers the option of teams.

Space Admins can use the teams feature to organize and streamline the administration of
groups of users and roles/permissions. With teams, there is no need to add users individually
to different spaces. Add the user to the team and then give the entire team access to different
spaces with just a few clicks. Every user within the team will inherit the role (and corresponding
permissions assigned to that role) that the team has been granted for each assigned space.

54 // Contentful Certified Professional Exam Study Guide

Managing Content at Scale
••

WHY CONTENT AS CODE?
Content models are always evolving, creating new content types, adding additional fields to
existing content types, and refactoring models to meet new requirements. Developers can
efficiently work with code at scale - using multiple Git branches, webhooks to automate CI/CD
workflows triggered by actions such as committing a new branch, and tools to make large scale
refactoring changes. Contentful allows you to work with content at scale, treating content as
code.

Developers who are evolving an application’s content model can use Contentful’s CLI tools built
on top of the Content Management REST API. Developers spin up one or more development
environments, similar to how they create feature branches in Git, to work in an isolated environ-
ment from content authors.

Content authors can use the web app to publish new content in draft mode. Draft content can
then be put through an approval process by having their colleagues preview their changes us-
ing the Contentful Content Preview API, and use the web app to publish their changes.

55 // Contentful Certified Professional Exam Study Guide

Once content is published, websites and applications can consume the content using Content-
ful’s REST APIs and SDKs.

Developers can prototype content model changes in the Contentful web app, and then create
small code snippets using the Migration SDK to apply those changes programmatically. The
combination of the Migration SDK, multiple development environments, and webhooks en-
ables developers to tap into their existing CI/CD workflow tools to make large scale content
model changes. After thorough testing, the changes can be safely deployed to the master envi-
ronment used by the editorial team.

CLI TOOLS
Contentful’s command line interface tools let you use Contentful features straight from your CLI,
providing the basis for DevOps automation.

Available CLI commands include:
• Securely login and logout with our OAuth service
• Manage spaces - List, create, ...
• Export your space to a JSON file
• Import your space from a JSON file
• Execute migration scripts written in the Contentful Migration DSL
• Generate migration scripts for the Contentful Migration DSL from existing spaces
• Seed your space with example data
• Create a new UI extension from a template
• Manage installation of extensions in a space
• Run a guide which introduces you to the Contentful basics

https://www.contentful.com/developers/docs/tutorials/cli/installation/

56 // Contentful Certified Professional Exam Study Guide

CONTENTFUL’S DOMAIN MODEL

The image above illustrates Contentful’s domain model:
• Organizations - the top most parent object, which connects users to a company.
• Users - members of an organization who have access to specific spaces based on roles &

permissions.
• Spaces - a child entity of an organization. Spaces contain content, assets and webhooks.
• Environments - entities belonging to a space. Spaces contain an isolated copy of content

and assets.

Each space always has at least one environment named “master.” Depending on their subscrip-
tion, customers might have additional environments as well. When you create a new environ-
ment inside of a space, the content model, content, locales and webhooks will by default be
copied from the master environment. However, there might be instances where you will want to
choose any other environment to be the basis for your new environment inside of that space.

Content models live inside of environments, enabling development teams to evolve a content
model in parallel for testing. They can then apply their content model changes back to the mas-
ter environment. You can manage org, space settings, users, access tokens and api keys, snap-
shots with the Contentful web app or the Content Management API.

57 // Contentful Certified Professional Exam Study Guide

SPACE MODELING PATTERNS
Space modeling is the concept of utilizing spaces and environments as well as other objects
within a space to design the best architecture for your project.

We use spaces to separate content based on different teams or use cases unless we find that
they have a lot in common and can share content or content types between them.

Here are three tips to get the most out of your spaces:
1. Use spaces to separate content that has different teams or different use cases unless they

need to share content
2. For large scale implementations, consider putting global shared content, team shared

content and project-specific content in separate spaces
3. Roles are specific to a space—use separate spaces if the same users need different permis-

sions

As we covered on the previous page, Contentful’s spaces are like repositories. They are a child
entity of an organization. Spaces contain content, assets, and webhooks.

In order to determine which space pattern is the best fit for your organization, consider the
following questions:

1. Will governance rules (i.e. user roles and access permissions) be the same or different
among the teams and projects?

2. Will content types be the same and/or shared across projects?
3. Will projects have the same localization requirements? Same or different set of locales?
4. Is there a legal or regulatory requirement for projects?

58 // Contentful Certified Professional Exam Study Guide

ONE SPACE TO RULE THEM ALL
One space to rule them all is a very common space modeling pattern we see in Contentful.
Many customers start off with a single space model.

This is a good pattern to use if all of these conditions are true:
• Content types and/or content entries are reusable across projects
• Projects all have the same localization needs
• Roles & Permissions provide sufficient access controls across all projects
• Content is intended to be used for multi-channel delivery
• Multiple teams or business units want to collaborate together across projects

SEPARATE SPACE PER PROJECT
Another space modeling pattern to use is separate spaces per project. This pattern lets multi-
ple development teams work independently of each other. In this model each team/space can
provide its own microservice.

This is a good pattern to use if one or more of the following conditions are true:
• Content types are not reusable across projects.
• Projects have different localization needs.
• Roles & permissions cannot be effectively used to create granular access controls.
• Business units have a regulatory or legal requirement to keep their project and content

separate.

59 // Contentful Certified Professional Exam Study Guide

MULTI-TIER SPACES
For large, multi-national, multi-brand, multilingual companies, we often see the need to mix
global content with more regional or local content. This is very difficult to do with traditional
server-based, legacy CMSes. Using multiple levels of spaces provides a very flexible solution to
these complex content requirements.

In this pattern, you create one or more spaces that are designated as a global or shared space.
This allows some of the content to be shared across an organization or across specific depart-
ments while other content can be project specific.

Any front-end or any application that is used for your project can access this global shared
space using an API token and retrieve and show those assets among those projects. You then
segregate your content across business units or teams. As a result, each team or business unit
might have a space designated for their specific line of business or projects that they don’t
share with other units or other teams and can manage in an isolated way.

If you want your content authors to view that content across their business and project spaces,
your team will need to build a UI extension so you can do cross-space referencing.

60 // Contentful Certified Professional Exam Study Guide

USING ENVIRONMENTS FOR AGILE DEVELOPMENT
Now that we’ve discussed space architecture, you need to think about how to use environments
to implement an agile deployment pipeline that adheres to CI/CD best practices.

Environment aliases are our solution for what we called in the past “environment promotion”
feature. Environment promotion is the ability for you to “promote” a new environment to be
served as your default environment (aka to be served from master or from the unscoped route).
It does not include git-like merging/diffing between environments (for now). Think of promotion
as “flipping a switch”- now your master/unscoped route serves content from a different environ-
ment. We decided to achieve this by turning master into an alias. In the future, we may support
user-defined aliases, but for now, master is the only one that will exist.

61 // Contentful Certified Professional Exam Study Guide

RISK-FREE RELEASES AND INSTANT ROLLBACKS
When you activate environment aliases within a Contentful space, “master” is no longer a space.
It’s an alias for a different space. In this example master initially is pointing to the release-1
space, so you’re serving production content off of release-1. The development team is working
on a new release using an environment named release-2. When the team has completed the
final testing of release-2 they switch master from pointing to release-1 to release-2. You do this
in the Contentful web app and it happens immediately. You can think of this as a blue/green
deployment if you are familiar with that concept.

You no longer need the release-1 environment and can delete it, although you generally want
to keep it around for a while in case you need to do an emergency rollback.

You can now spin up a new environment based upon release-2, and follow the same approach
and switch master to it when you’re ready.

62 // Contentful Certified Professional Exam Study Guide

USE CASES FOR ENVIRONMENT ALIASES
In the previous example we switched master from release-1 to release-2. What if, despite your
best testing efforts, you discover a serious bug after the switch? With environment aliases you
can immediately revert to release-1. That’s what’s great about zero downtime deployments.

With environment aliases it is very easy to create multiple backups of development environ-
ments. New environments can be spun up in seconds through either the Contentful web app or
the Content Management API. In the event that switching the master alias to a new environment
results in problems not found during testing, you can immediately revert master to a previous
working backup environment.

63 // Contentful Certified Professional Exam Study Guide

MANAGING CONTENT WITH CODE
In this chapter we’ve discussed how you can manage content at scale by managing content as
you manage code. So how do you do that?

There are five basic steps of managing your content as code:
1. Create the environments you need for CI/CD
2. Experiment with a content model in the web app where you can see JSON output
3. Create a script to programmatically build the full content model
4. Create migration scripts to evolve your content model and content
5. After testing, propagate your changes into the production environment by switching the

master environment alias

This video shows how you can manage your content as code.

https://contentful.wistia.com/medias/889yeie6ti

64 // Contentful Certified Professional Exam Study Guide

REFACTORING USING EXPAND/CONTRACT PATTERN
Content migrations can be very complex. For example, adding/deleting fields, editing existing
fields, creating new relationships between content types and fields, etc. In this case, we want to
have resilient content migrations that mitigate the risk of data loss or corruption. As a best prac-
tice, we refactor our code and our content model using the expand/contract pattern.

The “expand” phase refers to any change that adds or transform fields. Anything in this phase is
additive and will not affect the current version of your application from working properly.

The “contract” phase activities are destructive, such as deleting fields, deleting content types,
or deleting links between content types. If you have an application that has a dependency on
these fields, you want to avoid accidentally breaking that application by making sure that ap-
plication is updated to match the new fields and content types (i.e. the “expand” phase) before
you run the migration in the “contract” phase.

	Why Contentful?
	A massive market shift
	Stacks beat suites
	Build products faster
	Enterprises are replatforming on Contentful
	Contentful’s API-first approach
	Power content across all your digital channels
	Contentful runs as a SAAS
	Contentful use cases

	Content Delivery Architectures
	Where and when does rendering happen?
	Dynamic on server
	Static site generator
	Dynamic on device
	Dynamic hybrid with Node.js

	Contentful Core APIs
	Four core rest APIs
	Content Management API
	Content Delivery API
	Content Preview API
	Contentful Images API
	SDKs
	GraphQL Content API

	Content Modeling
	Structured content
	From structured content to content modeling
	Content types and fields
	What should you store in Contentful?
	Topics vs assemblies
	Fixed vs flexible assemblies
	Inheritance
	Composition
	Localization
	Field-level localization
	Entry-level localization
	Asset management
	Media wrapper content types
	Using a DAM
	Rich text
	Content modeling process

	Authoring in the Contentful Web App
	What’s in it for content authors?
	The Contenful web app
	The authoring experience
	Nested entries
	Previews for content authors
	Localization for content authors

	Extensibility
	Why extensibility?
	Contentful’s extensibility journey
	What is an App?
	What is the App Framework?
	Apps vs UI extensions
	Apps use cases
	Apps locations

	Webhooks
	What is a webhook?
	Configuring webhooks

	Roles and Permissions
	What are roles and permissions?
	Configuring roles and permissions
	Custom roles and permissions
	Teams

	Managing Content at Scale
	Why content as code?
	CLI tools
	Contentful’s domain model
	Space modeling patterns
	One space to rule them all
	Separate space per project
	Multi-tier spaces
	Using environments for agile development
	Risk-free releases and instant rollbacks
	Use cases for environment aliases
	Managing content with code
	Refactoring using expand/contract pattern

